Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311170, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377301

RESUMO

Some oxide-based particulate photocatalyst sheets exhibit excellent activity during the water-splitting reaction. The replacement of oxide photocatalysts with narrow-bandgap photocatalysts based on nonoxides could provide the higher solar-to-hydrogen energy conversion efficiencies that are required for practical implementation. Unfortunately, the activity of nonoxide-based photocatalyst sheets is low in many cases, indicating the need for strategies to improve the quality of nonoxide photocatalysts and the charge transfer process. In this work, single-crystalline particulate SrTaO2 N is studied as an oxygen evolution photocatalyst for photocatalyst sheets applied to Z-scheme water splitting, in combination with La5 Ti2 Cu0.9 Ag0.1 O7 S5 and Au as the hydrogen evolution photocatalyst and conductive layer, respectively. The loading of SrTaO2 N with CoOx provided increases activity during photocatalytic water oxidation, giving an apparent quantum yield of 15.7% at 420 nm. A photocatalyst sheet incorporating CoOx -loaded SrTaO2 N is also found to promote Z-scheme water splitting under visible light. Notably, the additional loading of nanoparticulate TiN on the CoOx -loaded SrTaO2 N improves the water splitting activity by six times because the TiN promotes electron transfer from the SrTaO2 N particles to the Au layer. This work demonstrates key concepts related to the improvement of nonoxide-based photocatalyst sheets based on facilitating the charge transfer process through appropriate surface modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...